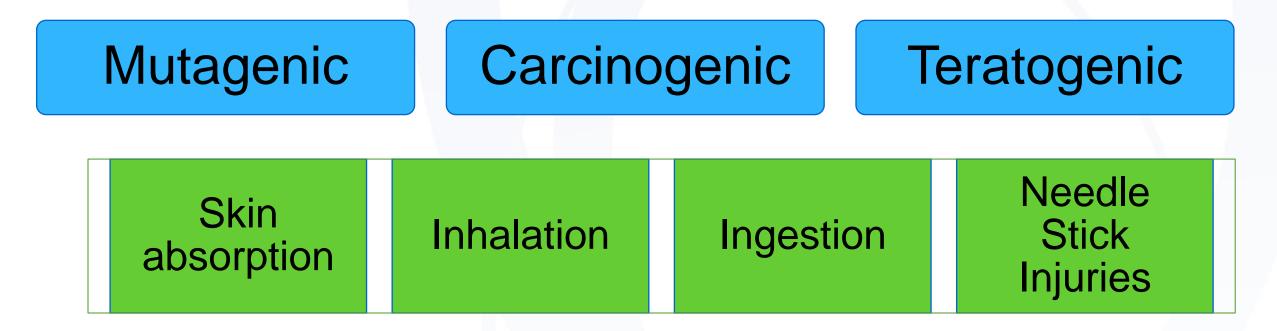
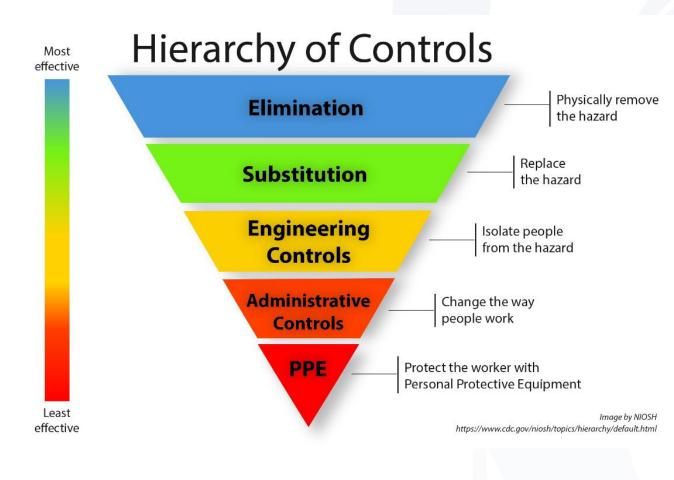
Evaluating the Use of Closed System Transfer Devices (CSTDs) in Aseptic Services


Louisa Knowles Advanced Pharmacist for Technical Services

University Hospitals Birmingham NHS Foundation Trust

Introduction


Cytotoxic Drugs for the Treatment of Cancer

Introduction to Guidance/Legislation

uilding healthier lives

- Directive 2004/37/EC the protection of workers from the risks related to exposure to carcinogens or mutagens at work
- European Biosafety Network Amendments to the Carcinogens and Mutagens Directive
- HSE Control of Substances Hazardous to Health Regulations (UK).
- HSE Safe Handling of Cytotoxic Drugs in the Workplace
- ISOPP Standards for the Safe Handling of Cytotoxics
- NIOSH Preventing Occupational Exposures to Antineoplastic and other Hazardous Drugs in Health Care Settings
- USP General Chapter 800 Hazardous Drugs Handling in Healthcare Settings

Introduction to CSTDs

NHS

Evidence for CSTDs

- Reduced cytotoxic contamination in preparation and administration areas
- Reduced cytotoxic levels in the urine of workers
- Cochrane Review, 2018 (1)
 - 24 studies
 - Lack of evidence
 - Low quality
 - High risk of bias
 - Largely industry sponsored

CSTD Syringe Caps for IV Bolus Administration

- NHS Pharmaceutical Quality Assurance Committee (2)
 - CSTD caps with syringes for intravenous use
 - Attached immediately prior to administration
- Syringe integrity testing on Tevadaptor® (3)
 Microbiological and physical challenges

 - Compliant with the "Protocols for the Integrity Testing of Syringes" (4)
- Stability and compatibility testing on Tevadaptor® (5)
 Compliant with "Standard Protocol for Deriving and Assessment of Stability" (6)
 - 11 drugs then Interpolation with other drugs (7)
- Use of a closed-system drug transfer device reduces contamination with doxorubicin during bolus injection, 2020 $_{\rm (8)}$

MSc Research Project

<u>Aim</u>

To determine if the addition of a CSTD syringe adaptor in the isolator reduces cytotoxic residue contamination during intravenous bolus administration.

Objectives

- 1. To confirm the syringe integrity of the Tevadaptor® Syringe Adaptor Lock attached to a luer-lock syringe.
- 2. To quantify the level of cyclophosphamide contamination during intravenous bolus administration via a luer-lock syringe with a standard syringe hub cap.
- 3. To quantify the level of cyclophosphamide contamination during intravenous bolus administration via a luer-lock syringe with a Tevadaptor® Syringe Adaptor Lock.

Method – Syringe Integrity Testing

Syringe	Volume of	Quantity
Size (ml)	Broth (ml)	Prepared
1ml	0.85ml	3
3ml	2.5ml	3
5ml	4.2ml	3
10ml	8.4ml	3
20ml	17ml	3
30ml	25ml	3
50ml	50ml	3

- Aseptic preparation
- Stored for 7 days
- Sent to QCNW
- Incubated

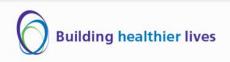
- Liquid media fertility testing
 - S.aureus, C.albicans, B.subtilis, A.brasiliensis, Cl.sporogenes, P.aerginosa
- Quality Assurance of Aseptic Preparation Services (9)
- Protocols for the Integrity Testing of Syringes Guidance (4)
- End of Session Broth Fill Technique (10)

Method – Cyclophosphamide Syringe Preparation

Cyclophosphamide Syringes				
Prepared with a Standard				
Syringe Hub Cap				
Dose	Volume	Quantity		
(mg)	(ml)			
1000mg	50ml	1		
800mg	40ml	1		
700mg	35ml	2		
600mg	30ml	2		
500mg	25ml	3		
400mg	20ml	4		
300mg	15ml	4		
200mg	10ml	4		
100mg	5ml	4		

Cyclophosphamide Syringes Prepared with a Tevadaptor® Syringe Lock Volume Quantity Dose (**mg**) (ml) 800mg 40ml 2 700mg 35ml 600mg 30ml 4 500mg 25ml 5 400mg 2 20ml **300mg** 15ml 4 **200mg** 10ml 5 100mg 2 5ml

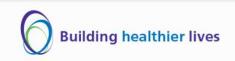
- Aseptic preparation
- Negative pressure
 isolator
- Tevadaptor® syringe
 adaptor locks


Method – Cyclophosphamide Syringe Sampling

- Fresh nitrile gloves
- 3 sampling points per syringe
 - Surface of syringe/cap
 - Connect/disconnect
 - Nurses' gloves
- Positive control
- Negative control

Method – Cyclophosphamide Syringe Analysis




- 10ml of 50% MeOH
- Roller
- 93.4% recovery
- 4µl injected into the LC-MS machine.
- Positive control
- Negative control
- $LOD = 7pg/cm^2$

Statistical Analysis

- Mann-Whitney U Test
- Null hypothesis 1 = There is no significant difference between the level of cyclophosphamide contamination on the syringes, between syringes with a standard hub cap and syringes with a Tevadaptor® cap.
- Null hypothesis 2 = There is no significant difference between the level of cyclophosphamide contamination on the swabs used for connect/disconnect, between syringes with a standard hub cap and syringes with a Tevadaptor® cap.
- Null hypothesis 3 = There is no significant difference between the level of cyclophosphamide contamination on the nurses' gloves, between syringes with a standard hub cap and syringes with a Tevadaptor® cap.

Results – Syringe Integrity Testing

Passed the syringe integrity testing validation

None of the broth filled syringes grew any microbial contamination

Fertility tests yielded growth of the requested microorganisms, except Cl.sporogenes.

Results – Cyclophosphamide Contamination on Syringes

A significant reduction in contamination when Tevadaptor® caps were used (Mdn = 0.62) compared to standard hub caps (Mdn = 8.29), z = 3.597, p <0.001 with a confidence interval of 95%.

Null hypothesis 1 was therefore rejected.

Samples above European Biosafety Network recommended limit of <0.1ng/cm²

- 12 with the standard syringe hub cap
- 0 with the Tevadaptor® cap

Results – Cyclophosphamide Contamination on Connect/Disconnect

A significant reduction in contamination was observed when Tevadaptor® caps were used (Mdn = 0.00) compared to standard hub caps (Mdn = 384.82), z = 5.801, p < 0.001 with a confidence interval of 95%.

Null hypothesis 2 was therefore rejected

Samples above European Biosafety Network recommended limit of <0.1ng/cm²:

- 19 with the standard syringe hub cap
- 0 with the Tevadaptor® cap

Results – Cyclophosphamide Contamination on Nurses' Gloves

A significant reduction in contamination was observed when Tevadaptor® caps were used (Mdn = 0.00) compared to standard hub caps (Mdn = 1.11), z = 5.904, p <0.001 with a confidence interval of 95%.

Null hypothesis 3 was therefore rejected.

Samples above European Biosafety Network recommended limit of <0.1ng/cm²:

- 2 with the standard syringe hub cap
- 0 with the Tevadaptor® cap

Results – Positive and Negative Controls

	Cyclophosphamide
	Contamination (ng)
Positive Control 1 – Standard Syringe Hub Cap	30730.12
Positive Control 2 – Tevadaptor® Syringe Adaptor Lock	4922.23

	Cyclophosphamide
	Contamination (ng)
Negative Control 1 – Standard Syringe Hub Cap	<lod< th=""></lod<>
Negative Control 2 – Tevadaptor® Syringe Adaptor Lock	<lod< th=""></lod<>

Discussion

Addition of the Tevadaptor® caps to syringes in the isolator significantly reduced cytotoxic residue on IV administration

Reduce risk of mutagenic, carcinogenic and teratogenic events

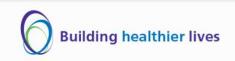
Reduced standard deviation with Tevadaptor® caps Less variability due to removal of human factor

Beneficial to add in the aseptic unit compared to ward level Significant reduction on nurses' gloves

Syringe integrity replicated with in-house processes

Limitations of the Study

Further Considerations



Conclusion

The addition of a CSTD syringe adaptor in the isolator reduces cytotoxic contamination during IV bolus administration

Further research needs to be completed

Further considerations need to be taken into account

References

- 1) Gurusamy KS, Best LMJ, Tanguay C, Lennan E, Korva M, Bussières JF. Closed-system drug-transfer devices plus safe handling of hazardous drugs versus safe handling alone for reducing exposure to infusional hazardous drugs in healthcare staff. Cochrane Database of Systematic Reviews. 2018(3).
- 2) Committee NPQA. Guidance on Handling of Injectable Cytotoxic Drugs in Clinical Areas in NHS Hospitals in the UK https://cytoprevent.eu/wp-content/uploads/2021/02/NHS-Guidance-on-Handling-Cytotoxics-Ed-1-July-2018.pdf2018
- 3) al A-SWe. Drug sterility is maintained in Luer Lock (LL) syringes fitted with Tevadaptor syringe adaptor lock (SAL)according to NHS yellow cover document (YCD syringe integrity standards https://www.simplivia.com/files/pdf/Peer Reviewed/BSTL A1 poster Sept 2019 v2.pdf2019
- 4) Committee NPQA. Protocols for the integrity testing of syringes <u>https://pasg.nhs.uk/downloads.php?did=2662013</u>
- 5) Sewell G, Massimini M. Studies on the stability and compatibility of cytotoxic drug infusions with the Tevadaptor device. European Journal of Oncology Pharmacy. 2014;8:26-30.
- 6) Committee NPQA. A Standard Protocol for Deriving and Assessment of Stability Part 1 Aseptic Preparations (Small Molecules) 5th Edition: <u>https://www.sps.nhs.uk/wp-content/uploads/2013/12/Stability-part-1-small-molecules-5th-Ed-Sept-19.pdf</u>; 2019 [Available from: <u>https://www.sps.nhs.uk/wp-content/uploads/2013/12/Stability-part-1-small-molecules-5th-Ed-Sept-19.pdf</u>.
- 7) Sewell G. Application of a published study on stability/compatibility data for cytotoxic drugs with the Tevadaptor device to cytotoxic drugs (non biological) outside the study: Expert Commentary. 2020.
- 8) Marler-Hausen T, Holt C, Headley C, Sessink P. Use of a closed-system drug transfer device reduces contamination with doxorubicin during bolus injection. British Journal of Nursing. 2020;29(10):S15-S21.

References

- Beaney A. Quality Assurance of Aseptic Preparation Services: Standards. https://www.rpharms.com/Portals/0/RPS%20document%20library/Open%20access/Professional%20standards/Quality%20Assurance https://www.rpharms.com/Portals/0/RPS%20document%20library/Open%20access/Professional%20standards/Quality%20Assurance https://www.rpharms.com/Portals/0/RPS%20document%20library/Open%20access/Professional%20standards/Quality%20Assurance https://www.rpharms.com/Portals/0/RPS%20%28QAAPS%29/rps---qaaps-standards-document.pdf Society and the NHS Pharmaceutical Quality Assurance Committee; 2016
- 10) Committee NPQA. End of Session Broth Fill Technique for Sterility Assurance of Products Aseptically Prepared in Section 10 Units SPS2007 [Available from: <u>https://www.sps.nhs.uk/wp-</u> content/uploads/2010/05/Broth20Fill20Techinque20Aseptically20Prepared20Section2010.pdf

